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INTRODUCTION_ 

The accidental or intentional introduction of 
solenoids and skew quadrupoles into a storage ring 
couples the transverse motion, unless the lattice is 
trimmed. Coupling can cause, for example, 
irreversible emittance blow up at injection 
(protons), resonance excitation, flat beam blow up 
in collision (electrons), and can destructively 
modify the beam-beam equations of motion. Apart from 
these effects themselves, not many diagnostics are 
available to guide compensation attempts. 

After developing a matrix description of 
coupling, this paper analyses the compensation Of a 
lattice insertion, and goes on to show how random 
errors can be handled close to a coupling resonance. 
The global decoupling of random errors in the SPS, 
achieved by the observation of eigenfrequencies on a 
spectrum analyser, is described. Rough estimates 
show that global compensation usually makes further 
(local) compensation unnecessary. 

MTRIX FORHALISH 

It is always possible to linearise the equations 
of transverse motion of a particle about its 
equilibrium orbit, even if this is distorted and 
passes through non-linear elements like sextupoles. 
Notion from i to j is described by 

1) y; = s..Y J’ 1 

where S is a 4x4 transfer matrix, and Y represents 
the physical displacement of the particle from the 
equilibrium orbit. It is more convenient to work in 
a normalized coordinate system X, such that 

2) 
c:x , 

xi = LiYi = ) 
( 1 ‘z, i yi 

where, for example, the G, matrix is 

1 - 0 
6 

3) (ii= <xx 

Ix r 
, z>: ic 

Transfer from i to j is now described by Tjib 

4) xj = rJi.Yi = (c.c.,cy’ , ,i 1 ).Gi’fl 

In the ideal uncoupled machine Tji simply rotates 
particles in X-phase space through the difference in 
betatron phases, so it is written in terms of the 
rotation matrix R as 

R(Qxi - dxi) 0 

5) 1‘,= i 
.I 1 

t 
c wazj - cbzc, 

) 

The ideal one turn matrix at P is written as 

6) 

whi .le in general TP 

‘) P 
T = 

In a lattice coupled by thin skew quadrupoles of 
focal length f, 
twist 0 , it 

and thick solenolids of angular 
has been shown that TP is 

approximated to first order in coupler strength by 

Here the first order fundamental ‘projection’ matrix 
F is given (with aP=O) by 

ti o\ 
9) 

ji = L q RI-ilx: 
\l oi 

1 8 ~c-6:~)~ c-l x z R(i?Z) 
skew S”ltl 

qu,d; 

where the dimensionless skew quad strength is 
-- 

Je :! 
10) ,I=+’ 

The summation in 9) is over all downstream 
couplers, at positive phase displacements from the 
reference point. A superscript plus sign + is used 
to denote the adjoint operation, 

11) (1 $q-: -;I 
so that the adjoint of a unimodular 2x2 matrix is 
its own inverse. A comparison of 7) and 8) shows 
that the matrices m and n are first order in coupler 
strength, but that ?I and N are only perturbed in 
higher orders. 

Edwards and Teng 2p3 have shown that matrices 
U and V always exist such that 

12) ” = vu”-1 = (;+;;I ,I::) (* 1) (+I/; -;::;;j 

where A. ‘B and D are unimodular. The normal modes of 
the motion correspond to the eigenvectors of A and 
8, so that the displacement on turn n is just 

131 xn = VF. 0x0:, 

If the matrix V is written in component form ss 

/ c o sd c = cos 4J 

14) v= o c 

l 

se 

st 
1 

sg’ 5 = sin ti 

-sg se ‘ 
j 

rig - fe = 1 

st --so 0 
/ 

then the transverse positions at the reference point 
P, as a function of time, become 

x = a>c.c! + .lxs. :di2 + es>: 

15) z = ajs.(-gcl+ es]) + ‘l2C.‘J 
cl= cos(2r~,n - i?]j etc. 

Here the amplitudes (emittances) al, a2, and the 
phases @ 1, $2, are constants of the motion, 
while Ql and Q2 are the eigenfrequencies of A 
and B. This motion is easy to visualise for the 
special cases shown in Figure 1. is coupled, and written as 
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Figure 1. The normal modes in two special cases 

Three useful time averages, which follow 
directly from 15). 

2cxz> T d12CL + a;G2(d * eY) 

16) JCL*, = n1252(g’ + &) + Liz53 
?<xz> = -ai2 scg + azi SC d 

show, for example, that flat beams, (al >> az), 
are vulnerable to vertical blow up through the ‘e’ 
component. If V refers to the collision point of 
flat beams, luminosity is lost unless 

- 
17) e SL,,W ‘C 

1 ZL, 

VTl 

If D is a unit matrix, the angle ti measures the 
angle of normal mode twist, and there is no 
distortion of the beam shape. D is given by 

18) 
Jj-!L- 

det':H) 

where the fundamental coupling matrix H is 

19) H = m + n+ : r\ F - FR+ 
x z 

The angle 0 is a generally convenient measure of the 
contortion of the normal modes, and is given in 
terms of ‘known’ quantities by 

20) 

Close to coupling resonances, when Tracetkl-N) passes 
through zero, d, reaches extreme values of +/- v/4 . 

The eigenfrequency splitting is given by 

21) ~scs(2~q,)-co:;(2~~;)) ' = (4 Tr!M - N))? + d*t(],) 

and is always more than the design tune split, 
Qx-Qx. The closest approach of Ql and Q2 is 
one measure of the coupling in a lattice. These last 
two equations lead to the geometrical interpretation 
of Figure 2. 

- lc~(det(H)g,* 

(l/Z)/Tr(M-NJ/ 

Figure 2. Geometric relation of tune splits and p 

A COUPLING INSERTION 

Solenoidal magnetic detectors are often included 
in storage rings, usually compensated locally by 
skew quadrupoles. The strengths of these skew quads 
must be chosen so that the matrix F (and H) 
dissapears everywhere outside the insertion. 
Evaluating F at a point with phases -Aox and 

-wz, 
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22) Fn = RI-3@x)F,R("@Z) 

and the insertion is decoupled if the matrix Ft is 
identically’xero, that is, with eYq = 0, if 

23) F, = )q Kc-id$ 

The solenoid has been assumed to lie symmetrically 
about simultaneous beta minima. 

Four simultaneous equations have to be 
satisfied, requiring at least four skew quads. 
Supposing that the lattice and the coupler layout is 
symmetric about &=O, Fi21 and Fnl2 are 
identically zero if the symmetric skew quad pairs 
are antisymmetrically powered, that is if 

24) q(4) = - q(lh) 

Although it is convenient to write these equations 
in terms of betatron functions and phases, global 
parameters, insertion decoupling is completely 
independent of outside magnet geometries and 
currents. Conspicuously absent from 23) are the 
lattice tunes Qx and Qx. 

A complete solution of the problem must show 
that the perturbation of the normal modes inside the 
insertion is not harmful. It can be cigourously 
shown, and is intuitively obvious, that Vn at the 
crossing point in a decoupled machine is 

25) v, z \ +Li 

i 
where the matrix F*,, includes only upstream 
couplers in the insertion. Continuing the example of 
a symmetric insertion, Fx, is in general 

26) F,“= Ic! 
m-3 

This shows that there is no normal mode 
twisting, but that flat beams are blown up 
vertically, unless the upper right matrix element is 
reduced to zero. It has also been shownl, 
theoretically and experimentally, that this element 
destructively modifies the beam-beam behaviour of 
flat beams. The remaining non-zero coupling matrix 
element is innocuous. For these reasons, insertions 
in electron machines should include three pairs of 
skew quadrupoles. 

RANDOR COUPLING ERRORS 
The matrix H 

It will now be assumed that only accidental 
coupling remains in the lattice, due for example to 
twisted quadrupoles, or to vertical orbit errors in 
sextupoles. Also, the fractional tunes are assumed 
to have a fairly small design tune split, hQ, as in 
the SPS and many other rings, 

27) Q,,z = Q. : kh.cc 

justifying the approximations for Rx and Rx 

28) Rx,z = K. L 14Q.R' " 

Keeping two terms in a Taylor expansion of H, 
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29) H * Ho + rAQ.tl, 

then, using 191, 

H = 
0 

1 q ~(-14~) b. (‘; $ - I’: ;) R’, ] K(Oz) 

SO 

30) 
+ -T,r /;lx; II 

and 

31) 

where some rotation matrices have been commuted. 

Global decoupling 
The matrix Ho is readily simplified to 

32) 1 gBR(@ - dx + W)? 
SOLN z J 

where the solenoid weight factor g is 

33) g = ( yxaz + YzSx + ?(l - nxnz) 

and the solenoid angle w is 

34) L‘m(tJ) = (a x + 3ph a x z - zzBx) 

For an experimental solenoid g is 2, and W is v/2. 
HO may also be described by a vector, since 32) 
could also be written 

35) Ho = sin (2nQo) 

where 

36) 
cos!Oz - Ox)\ 

sin!!dz - d \ 
)+ T g 3 

x’/ 
SOLN 

When the reference point P (the phase origin) at 
which HO has been calculated is moved azimuthally, 
this vector rotates, but explicitly preserves its 
length. The smallest normal mode splitting, SQ, is 
measured by this length, since from 211, 

1 ded (il 1 
37) 6Q : ~ _a*- 

Sl" ::nq ) 
= & (p' + .2)4 

0 

Global decoupling, making HO=O, is achieved in 
principle by adjusting two skew quad strengths 
until 6Q is reduced to zero. 

Figure 3, SPS eigenfrequencies, skew quad on/off 

Figure 3 shows the eigenfrequencies in the SPS 
as a function of the design vertical tune, with and 
without a current of 13.0 Amps in one skew quad. 
This quad has a fortunate phase location, since it 
alone removes almost all of the natural SPS 
coupling. 

Decoupling at finite (IQ 

The matrix Hl can also be simplified 

38) Hi = tl o cot(2-rQO) - F.2s:n(2aQo) 

but, due to the F contribution, it is not simply 
behaved azimuthally. The different behavior of 
Ho and Hl is illustrated by the example of a 
lattice with a decoupled insertion. Since the 
transfer matrix across the insertion is unchanged to 
first order in coupler strength, then the design 
tunes are the real tunes, and HO is zero 
everywhere, even inside the insertion. Outside the 
insertion, the normal modes ace not perturbed for 
any tunes, so F and Hl also dissapear. Inside the 
insertion, however, the normal modes can be very 
contorted, meaning that F and Hl may be very large. 

After making Ho=O, the coupling angle is 

39) 
&t’(H) 

tani2id) = --------- zlT!x sln(Wo) 
* det’ (F) 

Both J, and D are now independent of the separation 
in tunes, an important result. If desired, further 
decoupling is possible at places such as injection, 
extraction, or collision points. by local control of 
F. Rough estimates of HO and Hl in a statisticel 
model suggest that this is often not necessary. 

For example, take a lattice with 4Q regular 
cells, with a sextupole at each quadrupole, with 
random quad twists of <82,4, and with vertical orbit 
errors of <x?>h . The components of HO ace 
expected to be 

r 
40) 

cp?s?. _ .$,4 _ 1, T\"Q)E ( 24,~ + $2 q, 
'I 

where <ri> is a typical dispersion, say R/Q2, and 
q. is the strength of a regular quadrupole, about 
2 in dimensionless units. A rough estimate of the 
minimum tune split is then 

41) I i,4 _ _ & (3(j)? 2&.ii + cz:,k ;' 
L 1 

The natural SW coupling due to sextupoles, 
with <x2> 4 = 3 mm, Q = 27, I?. = 1100 m, and <e2>4= 0, 
is then estimated to be about &Q = 4.6x10e3, 
surprisingly close to the observed value of 
5.6~10-~ . 

Comparing 9) and 361, the expected size of the 
matrix elements of ,F. and Hl, can be written in 
terms of the expected minimum tune split. Putting 
this into 391, local decoupling is not necessary 
after global decoupling if angles of magnitude 

42) /lb1 = c SQ 

are acceptable. 
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